
Reconfigurable
Dataflow on DNN

Systolic Accelerator
National Yang-Ming Chiao Tung

University
Computer Science

Tsung Tai Yeh

1

Overview

• Systolic array architecture
• Dataflow on DNN accelerator
• Configurable dataflows

2

Systolic Array Accelerator

3

A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~106 X faster over 40 years
• Architectural innovations

• Width: 8->16->32->64 bits (~8X)
• Instruction level parallelism (ILP)
• Multicore: 1 processor to 16 cores
• Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

• IC technology makes it possible
• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at the same rate as

transistors are added
4John Hennessy, “The Future of Microprocessors”, 2017

Current Situation

• Technology
• End of Dennard scaling: power becomes the key

constraint
• Slowdown of Moore’s Law: transistor cost

• Architectural Designs
• Inefficiency to exploit instruction level parallelism in the

uniprocessor era, 2004
• Amdahl’s Law and its implications end

5John Hennessy, “The Future of Microprocessors”, 2017

What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• Only path left is Domain Specific Architectures

• Just do a few tasks, but extremely well

6John Hennessy, “The Future of Microprocessors”, 2017

Lessons from DSA

• Logic, wires, SRAM & DRAM
improve unequally
• SRAM access improved only

1.3X – 2.4 X  SRAM density
is scaling slowly

• DRAM access improved 6.3X
• Packaging innovations
• High Bandwidth Memory (HBM)
• HBM is more energy-efficient

than GDDR6 or DDR DRAM
• Logic improves much faster

than wires and SRAM 7Jouppi et al. ISCA, 2021

Lessons from DSA

• Leverage prior compiler optimization
• Many DSAs rely on VLIW including TPUs
• XLA (Accelerated Linear Algebra) compiler
• XLA raises the TPU by 2.2 X

compared to the same compiler
20 months ago

• C compilers improve general
purpose code 1 – 2% annually

• Good compilers are critical to
a DSA’s success

8Jouppi et al. ISCA, 2021

Lessons from DSA

• Some inference applications need floating point arithmetic
• Quantized arithmetic grants area and power savings
• But may reduce quality, delayed deployment and some apps don’t

work well when quantized

• Production inference needs multi-tenancy
• Sharing can lower costs and reduce latency if applications use

many models
• Multi-tenancy suggests fast DRAM for DSAs, since all weights can’t

fit in SRAM

9

Lessons from DSA

• DNN workloads evolve with DNN breakthroughs
• MLP drops (65% to 25%)
• BERT appeared in 2018,

yet its’s already 28% of the
workload

• A transformer encode +
LSTM decoder (RNN0) + a
wave RNN (RNN1) is 29%

• The importance of
programmability and
flexibility for inference DSAs to track DNN progress

10Jouppi et al. ISCA, 2021

Lessons from DSA

• DNNs grow ~1.5X per year in memory and compute
• DNNs grow as fast as Moore’s Law
• This rate suggests architects should provide headroom so DSAs

can remain useful over their full lifetime

11Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

• TPU v1
• Google’s first DNN DSA
• Handle inference (serving)
• The systolic array MXU has 64K 8-bit

integer Multiply Accumulate (MAC) units
• The CPU exchanges over PCIe

• Model inputs and outputs
• instructions

• Perf/Watt compared to GPUs and CPUs
• 30 – 80 X higher

12

Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

• TPU v2
• Addresses training
• Merge activation storage and the accumulators into a single vector

memory
• A more programmable vector unit
• Support Bfloat16 with 16 K MAC units (1/4 of the TPUv1’s size)
• The MXU was attached to the vector unit as a matrix co-processor
• High HBM DRAM bandwidth keeps TPUv2 core well utilized
• TPUv2 fetches its own 322-bit VLIW instructions from a local

memory rather than the host memory
13Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

• TPUv2
• Add a chip-to-chip interconnect

fabric (ICI) enable up to 256 chips
• Two TensorCores per chip
• Prevent the excessive latency

• Two small cores per chip vs.
• A single large full-chip core

• TPUv3
• Has 2X the number of MXUs and

HBM capacity
• 1024 chips

14Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

• TPUv4i (i means inference)
• Add 128 MB common memory

• A large data structure don’t fit
in vector memory

• Tensor DMA engine
• Fully decode and execute

TensorCore DMA instructions
• Enable 512B-granular 4D tensor

memory transfers between any
pair of architectural memories

• Unified DMA engine across
local, remote and host transfer

15Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

• TPUv4i
• Custom on-chip interconnect (OCI)

• The increase of memory bandwidth and the number of components
• A point-to-point approach becomes too expensive -> significant routing

resources/die area
• A shared OCI connects all components on the die

• Wider data path
• 512B native access size instead of 64B cache lines
• HBM bandwidth per core is 1.3X increased over TPUv3
• NUMA memory system – use (spatial locality and bisection bandwidth)
• Physically partitioned into four 128B-wide groups to optimize HBM

accesses

16

Tensor Processing Unit (TPU)

• TPUv4i
• Arithmetic unit

• The VLIW instruction needs extra fields to handle the four MXUs and
CMEM scratchpad memory -> 25% wider than TPUv3

• Sums groups of four multiplication results together
• Adds them to previous partial sum with a series of 32 two-input adders
• A four-input floating point adder
• Cuts the critical path through the systolic array
• The four-input adder saves 40% area and 25% power to a series 128 two-

input adders

17

Tensor Processing Unit (TPU)

• TPUv4i
• The die is < 400 mm2

• CMEM is 28% of the area
• OCI blocks are filled the space in

the abutted floorplan
• The die dimensions and overall

layout are dominated by the
TensorCore, CMEM, and SerDes

18Jouppi et al. ISCA, 2021

Tensor Processing Unit (TPU)

19

Jouppi et al. ISCA, 2021

TPU Instruction Set Architectures
• TPU instruction follows the CISC fashion
• Average clock cycles per instructions > 10
• No program counter and branch instruction
• In-order issue
• SW controls buffer, pipeline synchronization
• A dozen instructions overall, five key ones

• Read_Host_Memory
• Read_Weights
• MatrixMultiply/Convole
• Activate
• Write_Host_Memory

20

TPU Microarchitecture
• 4-stage overlapped execution,

1 instruction type/ stage
• Execute other instructions while

MM is busy
• Read_Weight doesn’t wait for

weights fetched from DRAM
• The MM unit uses not-ready

signal to indicate data aren’t
available in unified and Weight
FIFO buffer

21Jouppi et. al, ISCA 2017

TPU Micro-architecture

• Each PE performs Multiply-and
Accumulate (MAC) operation

• The unified memory buffer is
decomposed into input, weight,
and output buffer

• Each weight buffer stores weights
of a filter

• At each cycle, inputs are pushed in
the PE horizontally

• Partial sums flow vertically
22

Systolic Execution in TPU

• Reading a large SRAM is much more expansive than arithmetic
• Using systolic execution to reduce R/W of the unified buffer

23

X1
X2

X3

W11 W12 W13

W21 W22 W23

X1
X2

X3

W11 W12 W13

W21 W22 W23

X2
X3

X1
W11 W12 W13

W21 W22 W23

1 2

*

Systolic Execution in TPU
• Reuse input values
• Relies on data from different directions arriving at each array

at regular interval to do the calculation

24

X2
X3

X1
W11 W12 W13

W21 W22 W23

X3

W11 X2
W12 W13

X1
W21 W22 W23

X34 53

*
+

*

W11 X2
W12 W13

X1
W21 W22 W23

+

+

Systolic Execution in TPU

25

6

W11 X3
W13

X2
W22 W23

W12

W21

7

W11 X3
W13

X2
W22 W23

W12

W21 +

Y1 = W11X1 + W12X2 + W13X3

8

W11

X3
W23

W12

W21 W22

W31

9

W11

X3
W23

W12

W21 W22

W31 Y1 = W11X1 + W12X2 + W13X3

Y2 = W21X1 + W22X2 + W23X3

Case Study

• How to map input feature map and filter (weight) to TPU ?
• Suppose the size of the input feature map is 4 x 4, and the size of

filter is 2 x 2.

26

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

W0 W1

W2 W3

C0 C1 C2

C3 C4 C5

C6 C7 C8

* =

m x m

k x k
(m-k+1)(m-k+1)

Input

Filter
Output

Case Study
• How to map input feature map and filter to TPU ?
• How many cycles takes to complete the CONV of one

feature map with 2 x 2 filter, # of filter = 1 ?
• (m - K + 1)2 + K2 – 1 + (# of filter – 1)

27

a10 a9 a8 a6 a5 a4 a2 a1 a0 W0
a11 a10 a9 a7 a6 a5 a3 a2 a1 0 W1

0 a14 a13 a12 a10 a9 a8 a6 a5 a4 0 0 W2
a15 a14 a13 a11 a10 a9 a7 a6 a5 0 0 0 W3

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

Input

Weight
buffer

K2 – 1 cycles(m - K +1)2 cycles

m x m

cycles

Case Study
• The CONV weight stationary data flow

28

Im2col
transform

Case Study
• In real-world model, a DNN model often has multiple channels and

filters
• How many ops take to complete a CONV in the systolic array ?

• (m – k + 1) x (m – k + 1) x (k x k x iC x oC)

29

m

m

k
k

…
iC

*
Filter
number

m-k+1oC

m-k+1
=

Case Study
• How to map CONV

to the systolic array ?
• Systolic array contains

multiple PEs
• Each filter element

is placed on the
local buffer of each
PE

30

a0

a1 0

a4 0 0

a5 0 0 0

Input buffer

Channel 1

b0

b1 0

b4 0 0

b5 0 0 0

Channel 2

I0 Q1

I1 Q2

I2 Q3

i3 Q4

J0 R1

J1 R2

J2 R3

j3 R4

Systolic array

…

…
… …Filter 1 Filter 2

Output buffer

weight buffer

x1
x2 y1

y2

…

…

Case Study

• How many cycles takes to complete a CONV ?
• Systolic array size: 128 x 128
• Kernel size: 2 x 2
• Input channel: 256
• Input size: 10 x 10
• The number of filter: 16

31

1. 128 x 128 systolic array can execute floor(128/(2 x 2)) = 32 channels
2. The systolic array needs to take ceil(256/32) = 8 times
3. Each input takes (10 – 2 + 1)2 + (16 - 1) = 96 cycles
4. Total = 96 x 8 + (22 x 32 - 1) = 895 cycles

Systolic Execution Problem I
• Systolic execution works well when the size of input and weight

matrix fit the systolic array
• However, the DNN model doesn’t always hold the above

assumption
• The size of weight matrix is not

rectangular and larger than the
size of systolic array

• TPU requires to load the tile of
weight matrix multiple times

32

256 B

256

Input matrix

Weight
matrix

1 2 3

B

Systolic Execution Problem II

• Latency scales linearly with the side length of systolic array
• How many cycles for a 256 x 256 systolic array ?

• 256 cycles to complete traverse down the array
• 256 cycles to accumulate array

• How many cycles for a 512 x 512 systolic array ?
• 1024 cycles = (512 cycles on traverse + 512 cycles on accumulate)

• Large systolic array won’t reduce the latency in the
computation

33

Summary

• Systolic array sheds the light on the acceleration of DNN
models

• Systolic array architecture
• Customized PE
• Dataflow -> data reuse rate
• NoC
• Memory hierarchy (SRAM buffer and DRAM)
• Data types (FP16, INT8 …)

34

Takeaway Questions

• How does TPU reduce the energy consumption ?
• (A) Employ the weight stationery data flow
• (B) Increase the reuse of weights
• (C) Increase the number of PEs

• Given a DNN layer with 2 x 2 filter, we map this layer to a
TPU with 4 x 4 PEs. How many cycles are taken to activate all
PEs in the first column of TPU ?
• (A) 3
• (B) 4
• (C) 5

35

Dataflow DNN Accelerator

36

Design Aspects of Spatial Accelerator (SA)
• ALUs

• Can pass data from one to another directly
• Can have its own control logics and local

memory (registers)
• Dataflow processing

• Programmable -> dynamic vs static graphs
• Dynamic Mapping -> increase data reuse ->

energy-efficiency
• Why SA are popular on DNN workloads?

• Consume lower power & high throughput
• Why? Data reuse -> reduce data movement

37

Memory Hierarchy

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Spatial Architecture
(Dataflow Processing)

Spatial Array Architecture
• Spatial array architecture comprises

• An array of processing elements (PE)
• Off-chip DRAM
• Global buffer
• Network-on-chip (NOC)
• Register file (RF) in the PE

• Input and output FIFO (i/oFIFO)
• Use to communicate DRAM, global

buffer, and PE
• PE FIFO (pFIFO)

• Control the traffic going in and out
of ALU 38Chen et al, IEEE MICRO, 2018

Spatial Architecture for DNN

39

Global Buffer (100s – 1000s kB)

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

DRAM Network On-Chip (NoC)
1. Global Buffer to PE
2. PE to PE

ALU

Register File

Control

Processing Element (PE)

1 – 10 kB

Challenges of Spatial Accelerators

• Memory access is the bottleneck
• AlexNet has 2896M DRAM accesses

required
• How to decrease expensive DRAM

accesses ?
• Intelligent distributed data allocation

• Varying parameters in DNN models
• Each layer has different computation

volume
• Different operations in DNN layers and

models
40

Memory Hierarchy

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Spatial Architecture
(Dataflow Processing)

Improve Spatial Accelerator Energy-Efficiency ?

41

DRAM Memory Read MAC DRAM Memory Write

ALUFilter Weights
Fmap Activation

Partial sum Update partial sum

Worst Case: All memory R/W accesses from DRAM

Data Reuse on Local Memory

42

Memory Read MAC Memory Write

ALU

DRAM Mem Mem DRAM

How to leverage local memory to reduce the times of remote DRAM
access on DNN workloads ?
Optimal case: reduce 2896 M to 61 M DRAM accesses on AlexNet

Dataflow Taxonomy

• Output Stationary (OS)
• Weight Stationary (WS)
• Input Stationary (IS)
• Dataflow: Specifying the calculation ordering run in parallel

• The ordering of the operations
• Data prioritization across the memory hierarchy and

compute data paths

43

Weight Stationary (WS)
• Minimize weight read energy consumption
• Broadcast activations and accumulate psums spatially across PEs
• Each weight stays stationary in RF of each PE
• Maximize the reuse of weights from the RF at each PE

44

Global Buffer

W0 W1 W2 W3 W4

ActivationPsum

1D Convolution – Weight Stationary

45

Weights Inputs Outputs

H E = H – R + 1

int I[H]; // Input activations
int W[R]; // Filter weights
int O[E]; // Output activations

for (e = 0; e < E; e++)
for (r = 0; r < R; r ++)

O[e] += I[e + r] * W[r]

* =

R = 3, E = 1, then H = 3

R

Stationary weights
are distributed
across each PE array

Latency Analysis of Weight Stationary

• The weight stationary in the systolic array
• Inputs take (m – k + 1)2 + (k x k x C - 1) cycles to flow in the spatial

array horizontally
• Inputs also need to take F cycles to pass

through each filter
• Pre-load weights take (k x k x C) cycles
• Total cycles

• (m – k + 1)2 + (k x k x C -1) + (k x k x C) + F

46

Output Stationary (OS)
• Minimize partial sum R/W energy consumption
• Keep the accumulation of psums stationary in the RF
• Stream input activations across PE array
• Broadcast the weights to all PE array from the global buffer

47

Global Buffer

P0 P1 P2 P3 P4

WeightsActivation

1D Convolution – Output Stationary

48

Weights

R

Inputs Outputs

H E = H – R + 1
* =

R = 3, E = 1, then H = 3

int I[H]; // Input activations
int W[R]; // Filter weights
int O[E]; // Output activations

for (r = 0; r < R; r++)
for (e = 0; e < E; e ++)

O[e] += I[e + r] * W[r]

How about switch
loop “r” and “e” ?

Latency Analysis of Output Stationary

• The output stationary in the systolic array
• Inputs and weights are pushed in the systolic

array and takes (k x k x C - 1) + (m – k + 1)2

• Taking F cycles to pass through outputs
• Outputs are accumulated in-place
• Total cycles

• (k x k x C - 1) + (m – k + 1) + F

49

Input Stationary (IS)

• Minimize the energy consumption of reading input activations
• Unique filter weights are uni-cast into PEs at each cycle
• Psums are spatially accumulated across PEs

50

Global Buffer

I0 I1 I2 I3 I4

Weights Psum

1D Convolution – Input Stationary

51

int I[H]; // Input activations
int W[R]; // Filter weights
int O[E]; // Output activations

for (h = 0; h < H; h++)
for (r = 0; r < R; r ++)

O[h - r] += I[h] * W[r]

Weights Inputs Outputs

H E = H – R + 1
* =

R = 3, E = 1, then H = 3

Input activations are
stationary

R

h – r must be >= 0
and < E

Latency Analysis of Input Stationary

• The input stationary in the systolic array
• Weights stream into the systolic array horizontally and takes (k x k

x C - 1) + F cycles
• Weights also take (m – k + 1)2 cycles to

pass through entire inputs
• Pre-load inputs takes (k x k x C) cycles
• Total cycles

• (k x k x C) + (k x k x C - 1) + F + (m – k + 1)2

52

Parameters of CNN Network

53

Parameters
m The width and height of input feature map
K The width and height of filter
F The number of filters
C The number of channels
N The width and height of spatial array

Dataflow Cost Analysis

• OS minimizes output reads (0)
• WS saves # of weight reads (E)
• IS saves # of input reads (E)

54

OS WS IS
MACs E*R E*R E*R
Weight Reads E*R R E*R
Input Reads E*R E*R E
Output Reads 0 E*R E*R
Output Writes E E*R E*R

R: size of filter weight
E: size of output activations

These dataflows only
reduce a specific reads.
Could we do better ?

Row Stationary (RS)

• Minimize data reuse at RF
• Optimize for overall

data type energy
efficiency

55

Chen et al., ISCA 2017

How does RS work ?
• Keep the row of filter weights

stationary in RF of a PE
• PE does MACs for each sliding

window of ifmap at a time
• Use only one memory space to

accumulate Psums
• Overlap ifmap between different

sliding windows -> reuse ifmap

56

Chen et al., ISCA 2017

How does RS work ?

• Ifmap sliding window right
shifts

• Pop the value “a” out of RF
• Accumulate Psum “b”

57

Chen et al., ISCA 2017

How does RS work ?

• Ifmap sliding window continues
to right shift

• Pop out the value “b” in RF
• Accumulate psum “c”

58
Chen et al., ISCA 2017

How to choose dataflows ?

• Not a dataflow dominates all of DNN models
• Data collected from 256 x 256 systolic array, inference app., batch

size = 1
• Best dataflow varies

with changes
• Parameters of

model’s layers
• Size of PE array ->

granularity of data
partition

• …

59

Configurable Dataflows

• Supports WS and OS in a systolic
array’s PE
• Programmers can decide

the dataflow
• Software-defined

dataflow
• Pros and cons ?

60https://github.com/ucb-bar/gemmini

Summary

• Dataflow determines the data reuse rate of DNN workloads
• Dataflows on DNN accelerators

• Weight/input/output/row stationary

• Configurable dataflows
• Software defined dataflows
• Need the change of the hardware

61

Takeaway Questions

• What are the purposes of dataflow used by DNN applications?
• (A) Reduce the data movement across off-chip memory
• (B) Improve the operational latency
• (C) Decrease the energy consumption of spatial array accelerator

• What kind of dataflow implemented by the PE on
the right-hand side?
• (A) WS
• (B) IS
• (C) OS

62

ba

REGc

PE

x

+

