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Overview

• Systolic array architecture
• Dataflow on DNN accelerator
• Configurable dataflows
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Systolic Array Accelerator
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A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~106 X faster over 40 years
• Architectural innovations

• Width: 8->16->32->64 bits (~8X)
• Instruction level parallelism (ILP)
• Multicore: 1 processor to 16 cores 
• Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

• IC technology makes it possible
• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at the same rate as 

transistors are added
4John Hennessy, “The Future of Microprocessors”, 2017



Current Situation 

• Technology
• End of Dennard scaling: power becomes the key 

constraint
• Slowdown of Moore’s Law: transistor cost

• Architectural Designs
• Inefficiency to exploit instruction level parallelism in the 

uniprocessor era, 2004
• Amdahl’s Law and its implications end

5John Hennessy, “The Future of Microprocessors”, 2017



What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• Only path left is Domain Specific Architectures

• Just do a few tasks, but extremely well

6John Hennessy, “The Future of Microprocessors”, 2017



Lessons from DSA

• Logic, wires, SRAM & DRAM 
improve unequally
• SRAM access improved only 

1.3X – 2.4 X  SRAM density 
is scaling slowly

• DRAM access improved 6.3X
• Packaging innovations
• High Bandwidth Memory (HBM)
• HBM is more energy-efficient

than GDDR6 or DDR DRAM
• Logic improves much faster

than wires and SRAM 7Jouppi et al. ISCA, 2021



Lessons from DSA

• Leverage prior compiler optimization
• Many DSAs rely on VLIW including TPUs
• XLA (Accelerated Linear Algebra) compiler
• XLA raises the TPU by 2.2 X

compared to the same compiler
20 months ago

• C compilers improve general
purpose code 1 – 2% annually

• Good compilers are critical to
a DSA’s success

8Jouppi et al. ISCA, 2021



Lessons from DSA

• Some inference applications need floating point arithmetic
• Quantized arithmetic grants area and power savings
• But may reduce quality, delayed deployment and some apps don’t 

work well when quantized

• Production inference needs multi-tenancy
• Sharing can lower costs and reduce latency if applications use 

many models
• Multi-tenancy suggests fast DRAM for DSAs, since all weights can’t 

fit in SRAM
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Lessons from DSA

• DNN workloads evolve with DNN breakthroughs
• MLP drops (65% to 25%)
• BERT appeared in 2018, 

yet its’s already 28% of the
workload

• A transformer encode + 
LSTM decoder (RNN0) + a 
wave RNN (RNN1) is 29%

• The importance of 
programmability and 
flexibility for inference DSAs to track DNN progress

10Jouppi et al. ISCA, 2021



Lessons from DSA

• DNNs grow ~1.5X per year in memory and compute
• DNNs grow as fast as Moore’s Law
• This rate suggests architects should provide headroom so DSAs 

can remain useful over their full lifetime

11Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

• TPU v1
• Google’s first DNN DSA
• Handle inference (serving)
• The systolic array MXU has 64K 8-bit

integer Multiply Accumulate (MAC) units
• The CPU exchanges over PCIe

• Model inputs and outputs
• instructions

• Perf/Watt compared to GPUs and CPUs
• 30 – 80 X higher

12
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Tensor Processing Unit (TPU)

• TPU v2
• Addresses training
• Merge activation storage and the accumulators into a single vector 

memory
• A more programmable vector unit 
• Support Bfloat16 with 16 K MAC units (1/4 of the TPUv1’s size)
• The MXU was attached to the vector unit as a matrix co-processor
• High HBM DRAM bandwidth keeps TPUv2 core well utilized
• TPUv2 fetches its own 322-bit VLIW instructions from a local

memory rather than the host memory 
13Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

• TPUv2
• Add a chip-to-chip interconnect

fabric (ICI) enable up to 256 chips
• Two TensorCores per chip
• Prevent the excessive latency

• Two small cores per chip vs.
• A single large full-chip core

• TPUv3
• Has 2X the number of MXUs and 

HBM capacity
• 1024 chips

14Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

• TPUv4i (i means inference)
• Add 128 MB common memory

• A large data structure don’t fit 
in vector memory

• Tensor DMA engine
• Fully decode and execute 

TensorCore DMA instructions
• Enable 512B-granular 4D tensor 

memory transfers between any
pair of architectural memories

• Unified DMA engine across 
local, remote and host transfer

15Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

• TPUv4i
• Custom on-chip interconnect (OCI)

• The increase of memory bandwidth and the number of components
• A point-to-point approach becomes too expensive -> significant routing 

resources/die area
• A shared OCI connects all components on the die

• Wider data path 
• 512B native access size instead of 64B cache lines
• HBM bandwidth per core is 1.3X increased over TPUv3
• NUMA memory system – use (spatial locality and bisection bandwidth)
• Physically partitioned into four 128B-wide groups to optimize HBM 

accesses

16



Tensor Processing Unit (TPU)

• TPUv4i
• Arithmetic unit

• The VLIW instruction needs extra fields to handle the four MXUs and 
CMEM scratchpad memory -> 25% wider than TPUv3

• Sums groups of four multiplication results together
• Adds them to previous partial sum with a series of 32 two-input adders
• A four-input floating point adder
• Cuts the critical path through the systolic array
• The four-input adder saves 40% area and 25% power to a series 128 two-

input adders

17



Tensor Processing Unit (TPU)

• TPUv4i
• The die is < 400 mm2

• CMEM is 28% of the area
• OCI blocks are filled the space in 

the abutted floorplan
• The die dimensions and overall 

layout are dominated by the 
TensorCore, CMEM, and SerDes

18Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)
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TPU Instruction Set Architectures
• TPU instruction follows the CISC fashion
• Average clock cycles per instructions > 10
• No program counter and branch instruction
• In-order issue
• SW controls buffer, pipeline synchronization
• A dozen instructions overall, five key ones

• Read_Host_Memory
• Read_Weights
• MatrixMultiply/Convole
• Activate
• Write_Host_Memory

20



TPU Microarchitecture 
• 4-stage overlapped execution,

1 instruction type/ stage
• Execute other instructions while

MM is busy
• Read_Weight doesn’t wait for

weights fetched from DRAM
• The MM unit uses not-ready

signal to indicate data aren’t
available in unified and Weight
FIFO buffer 

21Jouppi et. al, ISCA 2017



TPU Micro-architecture

• Each PE performs Multiply-and 
Accumulate (MAC) operation

• The unified memory buffer is 
decomposed into input, weight, 
and output buffer

• Each weight buffer stores weights
of a filter

• At each cycle, inputs are pushed in 
the PE horizontally

• Partial sums flow vertically
22



Systolic Execution in TPU

• Reading a large SRAM is much more expansive than arithmetic 
• Using systolic execution to reduce R/W of the unified buffer
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Systolic Execution in TPU
• Reuse input values
• Relies on data from different directions arriving at each array 

at regular interval to do the calculation
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Systolic Execution in TPU
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Case Study

• How to map input feature map and filter (weight) to TPU ?
• Suppose the size of the input feature map is 4 x 4, and the size of 

filter is 2 x 2. 
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Case Study
• How to map input feature map and filter to TPU ?
• How many cycles takes to complete the CONV of one 

feature map with 2 x 2 filter, # of filter = 1 ? 
• (m - K + 1)2 + K2 – 1 + (# of filter – 1)
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Case Study
• The CONV weight stationary data flow

28
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Case Study
• In real-world model, a DNN model often has multiple channels and 

filters
• How many ops take to complete a CONV in the systolic array ? 

• (m – k + 1) x (m – k + 1) x (k x k x iC x oC)

29
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Case Study
• How to map CONV 

to the systolic array ?
• Systolic array contains

multiple PEs
• Each filter element

is placed on the 
local buffer of each 
PE
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Case Study

• How many cycles takes to complete a CONV ?
• Systolic array size: 128 x 128
• Kernel size: 2 x 2
• Input channel: 256
• Input size: 10 x 10
• The number of filter: 16

31

1. 128 x 128 systolic array can execute floor(128/(2 x 2)) = 32 channels
2. The systolic array needs to take ceil(256/32) = 8 times
3. Each input takes (10 – 2 + 1)2 + (16 - 1) = 96 cycles
4. Total = 96 x 8 + (22 x 32 - 1) =  895 cycles



Systolic Execution Problem I
• Systolic execution works well when the size of input and weight 

matrix fit the systolic array
• However, the DNN model doesn’t always hold the above 

assumption
• The size of weight matrix is not

rectangular and larger than the
size of systolic array

• TPU requires to load the tile of 
weight matrix multiple times

32
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Systolic Execution Problem II

• Latency scales linearly with the side length of systolic array
• How many cycles for a 256 x 256 systolic array ?

• 256 cycles to complete traverse down the array
• 256 cycles to accumulate array

• How many cycles for a 512 x 512 systolic array ?
• 1024 cycles = (512 cycles on traverse + 512 cycles on accumulate)

• Large systolic array won’t reduce the latency in the 
computation

33



Summary

• Systolic array sheds the light on the acceleration of DNN 
models

• Systolic array architecture
• Customized PE
• Dataflow -> data reuse rate
• NoC
• Memory hierarchy (SRAM buffer and DRAM)
• Data types (FP16, INT8 …)

34



Takeaway Questions

• How does TPU reduce the energy consumption ?
• (A) Employ the weight stationery data flow
• (B) Increase the reuse of weights
• (C) Increase the number of PEs

• Given a DNN layer with 2 x 2 filter, we map this layer to a 
TPU with 4 x 4 PEs. How many cycles are taken to activate all 
PEs in the first column of TPU ? 
• (A) 3
• (B) 4
• (C) 5

35



Dataflow DNN Accelerator
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Design Aspects of Spatial Accelerator (SA)
• ALUs

• Can pass data from one to another directly
• Can have its own control logics and local 

memory (registers)
• Dataflow processing

• Programmable -> dynamic vs static graphs
• Dynamic Mapping -> increase data reuse ->

energy-efficiency
• Why SA are popular on DNN workloads?

• Consume lower power & high throughput
• Why? Data reuse -> reduce data movement

37
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Spatial Array Architecture
• Spatial array architecture comprises

• An array of processing elements (PE)
• Off-chip DRAM
• Global buffer
• Network-on-chip (NOC)
• Register file (RF) in the PE

• Input and output FIFO (i/oFIFO)
• Use to communicate DRAM, global

buffer, and PE 
• PE FIFO (pFIFO)

• Control the traffic going in and out
of ALU 38Chen et al, IEEE MICRO, 2018



Spatial Architecture for DNN
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Challenges of Spatial Accelerators

• Memory access is the bottleneck
• AlexNet has 2896M DRAM accesses

required
• How to decrease expensive DRAM

accesses ?
• Intelligent distributed data allocation

• Varying parameters in DNN models
• Each layer has different computation 

volume
• Different operations in DNN layers and

models
40
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Improve Spatial Accelerator Energy-Efficiency ? 
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DRAM Memory Read MAC DRAM Memory Write

ALUFilter Weights
Fmap Activation

Partial sum Update partial sum

Worst Case: All memory R/W accesses from DRAM



Data Reuse on Local Memory
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Memory Read MAC Memory Write

ALU

DRAM Mem Mem DRAM

How to leverage local memory to reduce the times of remote DRAM 
access on DNN workloads ?
Optimal case: reduce 2896 M to 61 M DRAM accesses on AlexNet



Dataflow Taxonomy

• Output Stationary (OS)
• Weight Stationary (WS)
• Input Stationary (IS)
• Dataflow: Specifying the calculation ordering run in parallel

• The ordering of the operations
• Data prioritization across the memory hierarchy and 

compute data paths 

43



Weight Stationary (WS)
• Minimize weight read energy consumption
• Broadcast activations and accumulate psums spatially across PEs
• Each weight stays stationary in RF of each PE
• Maximize the reuse of weights from the RF at each PE

44
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1D Convolution – Weight Stationary
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Weights Inputs Outputs

H E = H – R + 1

int  I[H];           //   Input activations
int  W[R];        //   Filter weights
int  O[E];        //   Output activations

for  ( e = 0;  e < E; e++)
for  (r = 0; r < R; r ++)

O[e]  += I[e + r] * W[r]  

* =

R = 3, E = 1, then H = 3

R

Stationary weights 
are distributed 
across each PE array



Latency Analysis of Weight Stationary

• The weight stationary in the systolic array
• Inputs take (m – k + 1)2 + (k x k x C - 1) cycles to flow in the spatial 

array horizontally 
• Inputs also need to take F cycles to pass

through each filter
• Pre-load weights take (k x k x C) cycles
• Total cycles 

• (m – k + 1)2 + (k x k x C -1) + (k x k x C) + F

46



Output Stationary (OS)
• Minimize partial sum R/W energy consumption
• Keep the accumulation of psums stationary in the RF
• Stream input activations across PE array
• Broadcast the weights to all PE array from the global buffer

47
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1D Convolution – Output Stationary
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Weights

R

Inputs Outputs

H E = H – R + 1
* =

R = 3, E = 1, then H = 3

int  I[H];           //   Input activations
int  W[R];        //   Filter weights
int  O[E];        //   Output activations

for  ( r = 0;  r < R; r++)
for  (e = 0; e < E; e ++)

O[e]  += I[e + r] * W[r]  

How about switch 
loop “r” and “e” ?



Latency Analysis of Output Stationary

• The output stationary in the systolic array
• Inputs and weights are pushed in the systolic

array and takes (k x k x C - 1) + (m – k + 1)2

• Taking F cycles to pass through outputs
• Outputs are accumulated in-place
• Total cycles

• (k x k x C - 1) + (m – k + 1) + F

49



Input Stationary (IS)

• Minimize the energy consumption of reading input activations
• Unique filter weights are uni-cast into PEs at each cycle
• Psums are spatially accumulated across PEs 

50
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1D Convolution – Input Stationary
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int  I[H];           //   Input activations
int  W[R];        //   Filter weights
int  O[E];        //   Output activations

for  ( h = 0;  h < H; h++)
for  (r = 0; r < R; r ++)

O[h - r]  += I[h] * W[r]  

Weights Inputs Outputs

H E = H – R + 1
* =

R = 3, E = 1, then H = 3

Input activations are 
stationary

R

h – r must be >= 0 
and < E



Latency Analysis of Input Stationary

• The input stationary in the systolic array
• Weights stream into the systolic array horizontally and takes (k x k 

x C - 1) + F cycles
• Weights also take (m – k + 1)2 cycles to 

pass through entire inputs
• Pre-load inputs takes (k x k x C) cycles
• Total cycles

• (k x k x C) + (k x k x C - 1) + F + (m – k + 1)2

52



Parameters of CNN Network

53

Parameters
m The width and height of input feature map
K The width and height of filter
F The number of filters
C The number of channels
N The width and height of spatial array



Dataflow Cost Analysis

• OS minimizes output reads (0)
• WS saves # of weight reads (E)
• IS saves # of input reads (E)

54

OS WS IS
MACs E*R E*R E*R
Weight Reads E*R R E*R
Input Reads E*R E*R E
Output Reads 0 E*R E*R
Output Writes E E*R E*R

R: size of filter weight 
E: size of output activations

These dataflows only 
reduce a specific reads. 
Could we do better ?



Row Stationary (RS)

• Minimize data reuse at RF
• Optimize for overall 

data type energy
efficiency

55

Chen et al., ISCA 2017



How does RS work ?
• Keep the row of filter weights 

stationary in RF of a PE
• PE does MACs for each sliding

window of ifmap at a time
• Use only one memory space to 

accumulate Psums
• Overlap ifmap between different

sliding windows -> reuse ifmap

56

Chen et al., ISCA 2017



How does RS work ?

• Ifmap sliding window right
shifts

• Pop the value “a” out of RF
• Accumulate Psum “b”

57

Chen et al., ISCA 2017



How does RS work ?

• Ifmap sliding window continues
to right shift

• Pop out the value “b” in RF
• Accumulate psum “c”

58
Chen et al., ISCA 2017



How to choose dataflows ?

• Not a dataflow dominates all of DNN models
• Data collected from 256 x 256 systolic array, inference app., batch 

size = 1
• Best dataflow varies

with changes
• Parameters of 

model’s layers
• Size of PE array ->

granularity of data
partition

• …

59



Configurable Dataflows

• Supports WS and OS in a systolic 
array’s PE
• Programmers can decide

the dataflow 
• Software-defined

dataflow
• Pros and cons ?

60https://github.com/ucb-bar/gemmini



Summary

• Dataflow determines the data reuse rate of DNN workloads
• Dataflows on DNN accelerators

• Weight/input/output/row stationary

• Configurable dataflows
• Software defined dataflows
• Need the change of the hardware
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Takeaway Questions

• What are the purposes of dataflow used by DNN applications?
• (A) Reduce the data movement across off-chip memory
• (B) Improve the operational latency
• (C) Decrease the energy consumption of spatial array accelerator

• What kind of dataflow implemented by the PE on 
the right-hand side?
• (A) WS
• (B) IS
• (C) OS
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