

Overview

- Systolic array architecture
- Dataflow on DNN accelerator
- Configurable dataflows

Systolic Array Accelerator

A Golden Age in Microprocessor Design

- A great leap in microprocessor speed ~10⁶ X faster over 40 years
- Architectural innovations
 - Width: 8->16->32->64 bits (~8X)
 - Instruction level parallelism (ILP)
 - Multicore: 1 processor to 16 cores
 - Clock rate: 3 4000 MHz (~1000 X through technology & architecture)
- IC technology makes it possible
 - Moore's Law: growth in transistor count (2X every 1.5 years)
 - Dennard Scaling: power/transistor shrinks at the same rate as transistors are added

Current Situation

Technology

- End of Dennard scaling: power becomes the key constraint
- Slowdown of Moore's Law: transistor cost

Architectural Designs

- Inefficiency to exploit instruction level parallelism in the uniprocessor era, 2004
- Amdahl's Law and its implications end

What's Left?

- Transistors not getting much better
- Power budget not getting much higher
- One inefficient processor/chip to N efficient processors/chip
- Only path left is Domain Specific Architectures
 - Just do a few tasks, but extremely well

- Logic, wires, SRAM & DRAM improve unequally
 - SRAM access improved only
 1.3X 2.4 X → SRAM density
 is scaling slowly
 - DRAM access improved 6.3X
 - Packaging innovations
 - High Bandwidth Memory (HBM)
 - HBM is more energy-efficient than GDDR6 or DDR DRAM
 - Logic improves much faster than wires and SRAM

Oncustion		Picojoules per Operation						
12	Operation	45 nm	7 nm	45/7				
	Int 8	0.03	0.007	4.3				
	Int 32	0.1	0.03	3.3				
+	BFloat 16		0.11					
	IEEE FP 16	0.4	0.16	2.5				
	IEEE FP 32	0.9	0.38	2.4				
	Int 8	0.2	0.07	2.9				
	Int 32	3.1	1.48	2.1				
×	BFloat 16		0.21					
	IEEE FP 16	1.1	0.34	3.2				
	IEEE FP 32	3.7	1.31	2.8				
	8 KB SRAM	10	7.5	1.3				
SRAM	32 KB SRAM	20	8.5	2.4				
	1 MB SRAM ¹	100	14	7.1				
GeoMean ¹			1	2.6				
DRAM		Circa 45 nm	Circa 7 nm					
	DDR3/4	1300 ²	1300^{2}	1.0				
	HBM2		$250-450^2$					
	GDDR6		350-480 ²					

Leverage prior compiler optimization

- Many DSAs rely on VLIW including TPUs
- XLA (Accelerated Linear Algebra)
- XLA raises the TPU by 2.2 X compared to the same compiler 20 months ago
- C compilers improve general purpose code 1 – 2% annually
- Good compilers are critical to a DSA's success

- Some inference applications need floating point arithmetic
 - Quantized arithmetic grants area and power savings
 - But may reduce quality, delayed deployment and some apps don't work well when quantized
- Production inference needs multi-tenancy
 - Sharing can lower costs and reduce latency if applications use many models
 - Multi-tenancy suggests fast DRAM for DSAs, since all weights can't fit in SRAM

DNN workloads evolve with DNN breakthroughs

- MLP drops (65% to 25%)
- BERT appeared in 2018, yet its's already 28% of the workload
- A transformer encode + LSTM decoder (RNN0) + a wave RNN (RNN1) is 29%
- The importance of programmability and flexibility for inference DSAs to track DNN progress

Name	Avg. Size (MB)	Max Size (MB)	Multi- tenancy?	Avg. Number of Programs (StdDev), Range	% Use 2016/ 2020
MLP0	580	2500	Yes	27 (±17), 1-93	610/ 250/
MLP1	90	N.A.	Yes	5 (±0.3), 1-5	61%-25%
CNN0	60	454	No	1	5%-18%
CNN1	120	680	Yes	6 (±10), 1-34	370-1870
RNN0	1300	1300	Yes	13 (±3), 1-29	0%-29%
RNN1	120	400	No	1	0%-29%
BERT0	3000	3000	Yes	9 (±2), 1-14	00/ 200/
BERT1	90	N.A.	Yes	5 (±0.3), 1-5	0%-28%

• DNNs grow ~1.5X per year in memory and compute

- DNNs grow as fast as Moore's Law
- This rate suggests architects should provide headroom so DSAs can remain useful over their full lifetime

Model	Annual Memory Increase	Annual FLOPS Increase
CNN1	0.97	1.46
MLP1	1.26	1.26
CNN0	1.63	1.63
MLP0	2.16	2.16

TPU v1

- Google's first DNN DSA
- Handle inference (serving)
- The systolic array MXU has 64K 8-bit integer Multiply Accumulate (MAC) units
- The CPU exchanges over PCIe
 - Model inputs and outputs
 - instructions
- Perf/Watt compared to GPUs and CPUs
 - 30 80 X higher

	NO.
Feature	TPUv1
Peak TFLOPS / Chip	92 (8b int)
First deployed (GA date)	Q2 2015
DNN Target	Inference only
Network links x Gbits/s / Chip	
Max chips / supercomputer	1
Chip Clock Rate (MHz)	700
Idle Power (Watts) Chip	28
TDP (Watts) Chip / System	75 / 220
Die Size (mm²)	< 330
Transistors (B)	3
Chip Technology	28 nm
Memory size (on-/off-chip)	28MB / 8GB
Memory GB/s / Chip	34
MXU Size / Core	1 256x256
Cores / Chip	1
Chips / CPUHost	4 1

Jouppi et al. ISCA, 2021

• TPU v2

- Addresses training
- Merge activation storage and the accumulators into a single vector memory
- A more programmable vector unit
- Support **Bfloat16** with 16 K MAC units (1/4 of the TPUv1's size)
- The MXU was attached to the vector unit as a matrix co-processor
- High HBM DRAM bandwidth keeps TPUv2 core well utilized
- TPUv2 fetches its own 322-bit VLIW instructions from a local memory rather than the host memory

TPUv2

- Add a chip-to-chip interconnect fabric (ICI) enable up to 256 chips
- Two TensorCores per chip
- Prevent the excessive latency
 - Two small cores per chip vs.
 - A single large full-chip core

• TPUv3

- Has 2X the number of MXUs and HBM capacity
- 1024 chips

_	mn	mpr. A
Feature	TPUv1	TPUv2
Peak TFLOPS / Chip	92 (8b int)	46 (bf16)
First deployed (GA date)	Q2 2015	Q3 2017
DNN Target	Inference only	Training & Inf.
Network links x Gbits/s / Chip		4 x 496
Max chips / supercomputer		256
Chip Clock Rate (MHz)	700	700
Idle Power (Watts) Chip	28	<u>53</u>
TDP (Watts) Chip / System	75 / 220	280 / 460
Die Size (mm²)	< 330	< 62 <u>5</u>
Transistors (B)	3	9
Chip Technology	28 nm	<u>16 nm</u>
Memory size (on-/off-chip)	28MB / 8GB	32MB / 16GB
Memory GB/s / Chip	34	700
MXU Size / Core	1 256x256	<u>1 128x128</u>
Cores / Chip	1	2
Chips / CPUHost	4	4

- TPUv4i (i means inference)
 - Add 128 MB common memory
 - A large data structure don't fit in vector memory
 - Tensor DMA engine
 - Fully decode and execute TensorCore DMA instructions
 - Enable 512B-granular 4D tensor memory transfers between any pair of architectural memories
 - Unified DMA engine across local, remote and host transfer

TCS & SMEM, IMEM

Tensor

Legend

TPUv4i

- Custom on-chip interconnect (OCI)
 - The increase of memory bandwidth and the number of components
 - A point-to-point approach becomes too expensive -> significant routing resources/die area
 - A shared OCI connects all components on the die

Wider data path

- 512B native access size instead of 64B cache lines
- HBM bandwidth per core is 1.3X increased over TPUv3
- NUMA memory system use (spatial locality and bisection bandwidth)
- Physically partitioned into four 128B-wide groups to optimize HBM accesses

TPUv4i

Arithmetic unit

- The VLIW instruction needs extra fields to handle the four MXUs and CMEM scratchpad memory -> 25% wider than TPUv3
- Sums groups of four multiplication results together
- Adds them to previous partial sum with a series of 32 two-input adders
- A four-input floating point adder
- Cuts the critical path through the systolic array
- The four-input adder saves 40% area and 25% power to a series 128 two-input adders

TPUv4i

- The die is < 400 mm²
- CMEM is 28% of the area
- OCI blocks are filled the space in the abutted floorplan
- The die dimensions and overall layout are dominated by the TensorCore, CMEM, and SerDes

Jouppi et al. ISCA, 2021

Feature	TPUv1	TPUv2	TPUv3	TPUv4i	NVIDIA T4	
Peak TFLOPS / Chin	92 (8b int)	46 (bf16)	123 (bf16)	138 (bf16/8b int)	65 (ieee fp16)/130 (8b int)	
First deployed (GA date)	O2 2015	O3 2017	O4 2018	O1 2020	O4 2018	
DNN Target	Inference only	Training & Inf	Training & Inf	Inference only	Inference only	
Network links x Gbits/s / Chip		4 x 496	4 x 656	2 x 400		
Max chips / supercomputer		256	1024			
Chip Clock Rate (MHz)	700	700	940	1050	585 / (Turbo 1590)	
Idle Power (Watts) Chip	28	<u>53</u>	<u>84</u>	<u>55</u>	36	
TDP (Watts) Chip / System	75 / 220	<u>280 / 460</u>	<u>450 / 660</u>	<u>175 / 275</u>	70 / 175	
Die Size (mm²)	< 330	< 62 <u>5</u>	<u>< 700</u>	< 40 <u>0</u>	545	
Transistors (B)	3	9	<u>10</u>	<u>16</u>	14	
Chip Technology	28 nm	<u>16 nm</u>	16 nm	<u>7 nm</u>	12 nm	
Memory size (on-/off-chip)	28MB / 8GB	32MB / 16GB	32MB / 32GB	<u>144MB / 8GB</u>	18MB / 16GB	
Memory GB/s / Chip	34	<u>700</u>	<u>900</u>	<u>614</u>	320 (if ECC is disabled)	
MXU Size / Core	1 256x256	<u>1 128x128</u>	2 128x128	<u>4 128x128</u>	8 8x8	
Cores / Chip	1	2	2	1	40	
Chips / CPUHost	4	4	4	8	8	

TPU Instruction Set Architectures

- TPU instruction follows the CISC fashion
- Average clock cycles per instructions > 10
- No program counter and branch instruction
- In-order issue
- SW controls buffer, pipeline synchronization
- A dozen instructions overall, five key ones
 - Read_Host_Memory
 - Read_Weights
 - MatrixMultiply/Convole
 - Activate
 - Write_Host_Memory

TPU Microarchitecture

- 4-stage overlapped execution,
 1 instruction type/ stage
- Execute other instructions while MM is busy
- Read_Weight doesn't wait for weights fetched from DRAM
- The MM unit uses not-ready signal to indicate data aren't available in unified and Weight FIFO buffer

TPU Micro-architecture

- Each PE performs Multiply-and Accumulate (MAC) operation
- The unified memory buffer is decomposed into input, weight, and output buffer
- Each weight buffer stores weights of a filter
- At each cycle, inputs are pushed in the PE horizontally
- Partial sums flow vertically

Systolic Execution in TPU

- Reading a large SRAM is much more expansive than arithmetic
- Using systolic execution to reduce R/W of the unified buffer

Systolic Execution in TPU

- Reuse input values
- Relies on data from different directions arriving at each array at regular interval to do the calculation

Systolic Execution in TPU

- How to map input feature map and filter (weight) to TPU ?
- Suppose the size of the input feature map is 4 x 4, and the size of filter is 2 x 2.

- How to map input feature map and filter to TPU ?
- How many cycles takes to complete the CONV of one feature map with 2 x 2 filter, # of filter = 1?
 - $(m K + 1)^2 + K^2 1 + (\# \text{ of filter} 1)$

m x m										
a ₀	a_1	a ₂	a ₃							
a_4	a ₅	a_6	a ₇							
a ₈	a ₉	a ₁₀	a ₁₁							
a ₁₂	a ₁₃	a ₁₄	a ₁₅							

Input

cycles

											\triangle		_	
			a10	a9	a8	a6	a5	a4	a2	a1	a0-	W0		
		a11	a10	a9	a7	a6	a5	a3	a2	a1	0	W1		Weight
0	a14	a13	a12	a10	a9	a8	a6	a5	a4	0	0	W2		buffer
a15	a14	a13	a11	a10	a9	a7	a6	a5	0	0	0	W3	ل	
(m - K +1) ² cycles								$K^2 - 1$	1 cycl	es				

The CONV weight stationary data flow

- In real-world model, a DNN model often has multiple channels and filters
- How many ops take to complete a CONV in the systolic array?
 - $(m k + 1) \times (m k + 1) \times (k \times k \times iC \times oC)$

- How to map CONV to the systolic array?
- Systolic array contains multiple PEs
- Each filter element is placed on the local buffer of each PE

- How many cycles takes to complete a CONV ?
 - Systolic array size: 128 x 128
 - Kernel size: 2 x 2
 - Input channel: 256
 - Input size: 10 x 10
 - The number of filter: 16
 - 1. 128×128 systolic array can execute floor $(128/(2 \times 2)) = 32$ channels
 - 2. The systolic array needs to take ceil(256/32) = 8 times
 - 3. Each input takes $(10 2 + 1)^2 + (16 1) = 96$ cycles
 - 4. Total = $96 \times 8 + (2^2 \times 32 1) = 895$ cycles

Systolic Execution Problem I

- Systolic execution works well when the size of input and weight matrix fit the systolic array
- However, the DNN model doesn't always hold the above assumption
- The size of weight matrix is not rectangular and larger than the size of systolic array
- TPU requires to load the tile of weight matrix multiple times

Systolic Execution Problem II

- Latency scales linearly with the side length of systolic array
- How many cycles for a 256 x 256 systolic array ?
 - 256 cycles to complete traverse down the array
 - 256 cycles to accumulate array
- How many cycles for a 512 x 512 systolic array ?
 - 1024 cycles = (512 cycles on traverse + 512 cycles on accumulate)
- Large systolic array won't reduce the latency in the computation

Summary

- Systolic array sheds the light on the acceleration of DNN models
- Systolic array architecture
 - Customized PE
 - Dataflow -> data reuse rate
 - NoC
 - Memory hierarchy (SRAM buffer and DRAM)
 - Data types (FP16, INT8 ...)

Takeaway Questions

- How does TPU reduce the energy consumption ?
 - (A) Employ the weight stationery data flow
 - (B) Increase the reuse of weights
 - (C) Increase the number of PEs
- Given a DNN layer with 2 x 2 filter, we map this layer to a TPU with 4 x 4 PEs. How many cycles are taken to activate all PEs in the first column of TPU?
 - (A) 3
 - (B) 4
 - (C) 5

Dataflow DNN Accelerator

Design Aspects of Spatial Accelerator (SA)

• ALUs

- Can pass data from one to another directly
- Can have its own control logics and local memory (registers)

Dataflow processing

- Programmable -> dynamic vs static graphs
- Dynamic Mapping -> increase data reuse -> energy-efficiency

Why SA are popular on DNN workloads?

- Consume lower power & high throughput
- Why? Data reuse -> reduce data movement

Spatial Architecture (Dataflow Processing) Memory Hierarchy **ALU ALU ALU ALU ALU** ALU ALU ALU **ALU**

Spatial Array Architecture

Spatial array architecture comprises

- An array of processing elements (PE)
- Off-chip DRAM
- Global buffer
- Network-on-chip (NOC)
- Register file (RF) in the PE

Input and output FIFO (i/oFIFO)

 Use to communicate DRAM, global buffer, and PE

• PE FIFO (pFIFO)

Control the traffic going in and out of ALU

Spatial Architecture for DNN

Challenges of Spatial Accelerators

- Memory access is the bottleneck
 - AlexNet has 2896M DRAM accesses required
 - How to decrease expensive DRAM accesses?
 - Intelligent distributed data allocation
- Varying parameters in DNN models
 - Each layer has different computation volume
 - Different operations in DNN layers and models

Improve Spatial Accelerator Energy-Efficiency?

Worst Case: All memory R/W accesses from DRAM

Data Reuse on Local Memory

How to leverage local memory to reduce the times of remote DRAM access on DNN workloads?

Optimal case: reduce 2896 M to 61 M DRAM accesses on AlexNet

Dataflow Taxonomy

- Output Stationary (OS)
- Weight Stationary (WS)
- Input Stationary (IS)
- Dataflow: Specifying the calculation ordering run in parallel
 - The ordering of the operations
 - Data prioritization across the memory hierarchy and compute data paths

Weight Stationary (WS)

- Minimize weight read energy consumption
- Broadcast activations and accumulate psums spatially across PEs
- Each weight stays stationary in RF of each PE
- Maximize the reuse of weights from the RF at each PE

1D Convolution – Weight Stationary

Stationary weights are distributed across each PE array

Latency Analysis of Weight Stationary

The weight stationary in the systolic array

• Inputs take $(m - k + 1)^2 + (k \times k \times C - 1)$ cycles to flow in the spatial

array horizontally

 Inputs also need to take F cycles to pass through each filter

- Pre-load weights take (k x k x C) cycles
- Total cycles
 - $(m k + 1)^2 + (k \times k \times C 1) + (k \times k \times C) + F$

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
- Keep the accumulation of psums stationary in the RF
- Stream input activations across PE array
- Broadcast the weights to all PE array from the global buffer

1D Convolution – Output Stationary

How about switch loop "r" and "e"?

Latency Analysis of Output Stationary

The output stationary in the systolic array

- Inputs and weights are pushed in the systolic array and takes $(k \times k \times C 1) + (m k + 1)^2$
- Taking F cycles to pass through outputs
- Outputs are accumulated in-place
- Total cycles
 - $(k \times k \times C 1) + (m k + 1) + F$

Input Stationary (IS)

- Minimize the energy consumption of reading input activations
- Unique filter weights are uni-cast into PEs at each cycle
- Psums are spatially accumulated across PEs

1D Convolution – Input Stationary

Input activations are stationary

Latency Analysis of Input Stationary

The input stationary in the systolic array

• Weights stream into the systolic array horizontally and takes (k x k

x C - 1) + F cycles

• Weights also take $(m - k + 1)^2$ cycles to pass through entire inputs

- Pre-load inputs takes (k x k x C) cycles
- Total cycles
 - $(k \times k \times C) + (k \times k \times C 1) + F + (m k + 1)^2$

Parameters of CNN Network

Parameters			
m	The width and height of input feature map		
K	The width and height of filter		
F	The number of filters		
С	The number of channels		
N	The width and height of spatial array		

Dataflow Cost Analysis

- OS minimizes output reads (0)
- WS saves # of weight reads (E)
- IS saves # of input reads (E)

R: size of filter weight

E: size of output activations

These dataflows only reduce a specific reads. Could we do better?

	OS	WS	IS
MACs	E*R	E*R	E*R
Weight Reads	E*R	R	E*R
Input Reads	E*R	E*R	E
Output Reads	0	E*R	E*R
Output Writes	E	E*R	E*R 5

Row Stationary (RS)

- Minimize data reuse at RF
- Optimize for overall data type energy efficiency

How does RS work?

- Keep the row of filter weights stationary in RF of a PE
- PE does MACs for each sliding window of ifmap at a time
- Use only one memory space to accumulate Psums
- Overlap ifmap between different sliding windows -> reuse ifmap

Chen et al., ISCA 2017

How does RS work?

- Ifmap sliding window right shifts
- Pop the value "a" out of RF
- Accumulate Psum "b"

How does RS work?

- Ifmap sliding window continues to right shift
- Pop out the value "b" in RF
- Accumulate psum "c"

How to choose dataflows?

Not a dataflow dominates all of DNN models

• Data collected from 256 x 256 systolic array, inference app., batch

size = 1

 Best dataflow varies with changes

- Parameters of model's layers
- Size of PE array -> granularity of data partition

• ...

Configurable Dataflows

 Supports WS and OS in a systolic array's PE

 Programmers can decide the dataflow

- Software-defined dataflow
- Pros and cons?

Summary

- Dataflow determines the data reuse rate of DNN workloads
- Dataflows on DNN accelerators
 - Weight/input/output/row stationary
- Configurable dataflows
 - Software defined dataflows
 - Need the change of the hardware

Takeaway Questions

- What are the purposes of dataflow used by DNN applications?
 - (A) Reduce the data movement across off-chip memory
 - (B) Improve the operational latency
 - (C) Decrease the energy consumption of spatial array accelerator
- What kind of dataflow implemented by the PE on the right-hand side?
 - (A) WS
 - (B) IS
 - (C) OS

